

Oral

Physique 1

TSI

On considère une masse m de vapeur d'eau (assimilable à un gaz parfait de masse molaire M=18 g) à la température T_1 et à la pression P_1 .

On lui fait subir une compression isotherme réversible qu'on arrête dès que toute l'eau est liquide.

- 1. Calculer la chaleur et le travail échangés entre l'eau et le milieu extérieur.
- 2. Calculer les variations d'énergie, d'enthalpie, d'entropie de l'eau durant cette transformation.

Faire les applications numériques pour m=4 kg, $T_1=470$ K et $P_1=1$ atm.

On donne, à la température $T_1 = 470~\mathrm{K}$:

La pression de vapeur saturante L'enthalpie massique de vaporisation Le volume massique de l'eau liquide La constante des gaz parfaits $1 \text{ atm} \leftrightarrow 1,013 \times 10^5 \text{ Pa}$

 $p_v = 14.6 \text{ atm}$ $l_v = 1.95 \times 10^6 \text{ J} \cdot \text{kg}^{-1}$ $u_l = 1.16 \times 10^{-3} \text{ m}^3 \cdot \text{kg}^{-1}$ $R = 8.32 \text{ J} \cdot \text{K}^1 \cdot \text{mol}^{-1}$