CONCOURS CENTRALE·SUPÉLEC

Mathématiques 1

Oral

PC

- 1. Soient a un réel strictement négatif et b un réel strictement positif. On note \mathcal{A} l'ensemble des fonctions f à valeurs réelles de classe C^{∞} sur l'intervalle]a,b[telles que f et toutes ses dérivées successives soient positives ou nulles sur]a,b[.
 - a. L'ensemble \mathcal{A} est-il un sous-espace vectoriel de l'espace des fonctions de classe C^{∞} sur l'intervalle]a,b[?

Si f et g sont deux éléments de $\mathcal{A},$ leur produit fg appartient-il à \mathcal{A} ?

Soit f un élément de \mathcal{A} . Pour tout $x \in]a,b[$, pour tout $n \in \mathbb{N}$, on pose :

$$R_n(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

b. Justifier que la fonction

$$x \mapsto \frac{f(x) - f(0)}{x}$$

est croissante sur]0,b[.

c. Soit $n \in \mathbb{N}$. Montrer que la fonction

$$x \mapsto \frac{R_n(x)}{x^{n+1}}$$

est croissante sur]0,b[.

d. En déduire que si $0 \leqslant x < y < b$, on a pour tout $n \in \mathbb{N}$:

$$0 \leqslant R_n(x) \leqslant f(y) \left(\frac{x}{y}\right)^{n+1}$$

- e. Justifier l'existence d'un réel strictement positif r tel que la fonction f soit développable en série entière sur l'intervalle]-r,r[.
- 2. Démontrer que la fonction tangente est développable en série entière sur l'intervalle $]-\pi/2,\pi/2[$ et donner les 6 premiers coefficients de son développement.