

Chimie

MP

Exercice avec préparation

Le thiocyanate d'argent, $\operatorname{AgSCN}_{(s)}$, est un composé blanc peu soluble dans l'eau. A 25°C son produit de solubilité est $K_s = 10^{-12}$. Les ions thiocyanate forment avec les ions Fe^{3+} un complexe peu stable et très coloré. La constante de dissociation de $[\operatorname{FeSCN}]^{2+}$ est $K_D = 10^{-2,3}$. La coloration est visible pour une concentration en complexe $[\operatorname{FeSCN}]^{2+}$ de 10^{-5} mol·L⁻¹.

- 1. Dans un erlenmeyer on verse 20,0 mL d'une solution de nitrate d'argent de concentration $C_{\rm Ag}$ et 5 mL d'une solution contenant des ions Fe³⁺ de concentration $C_{\rm Fe} = 2,0 \times 10^{-2} \, {\rm mol \cdot L^{-1}}$. On dose par une solution S de thiocyanate de potassium de concentration $C_{\rm SCN} = 1,00 \times 10^{-2} \, {\rm mol \cdot L^{-1}}$. La coloration rouge apparaît pour un volume de solution de thiocyanate versé de $V_1 = 19,9 \, {\rm mL}$.
 - a. Donner deux représentations de Lewis de l'ion thiocyanate (C étant l'atome central); en déduire ses propriétés de ligand.
 - b. Quelle est la concentration en ions SCN^- de la solution lorsque apparaît la coloration rouge de $[FeSCN]^{2+}$?
 - c. En déduire quelle est la concentration en ions Ag⁺ lorsque la coloration rouge de [FeSCN]²⁺ apparaît au cours du dosage ? Conclure.
 - d. Calculer la concentration de la solution de nitrate d'argent utilisée.
 - e. Quel volume de solution S faut-il verser pour observer la précipitation? Conclure.
- 2. Le bromure d'argent est un sel peu soluble dont le produit de solubilité est $K_{s2} = 10^{-12.3}$.

Dans un erlenmeyer on verse 10,0 mL de la solution de bromure de potassium à doser et 20,0 mL de la solution de nitrate d'argent (utilisée précédemment) de concentration C_{Ag} . On ajoute 5 mL d'une solution d'ions Fe³⁺ contenant $C_{Fe} = 2,0 \times 10^{-1}$ mol·L⁻¹ et on dose les ions Ag⁺ en excès par la solution S de thiocyanate de potassium. La coloration rouge apparaît pour un volume de solution de thiocyanate versé de $V_2 = 9,9$ mL.

- a. En déduire la concentration de la solution de bromure utilisée.
- b. Quelle verrerie utiliser pour mesurer les différents volumes des solutions?
- 3. Dans le bromure d'argent les ions bromures constituent un réseau cubique à faces centrées dont tous les sites octaédriques sont occupés par les ions Ag^+ .
 - a. Représenter une maille de bromure d'argent.
 - b. La masse volumique du bromure d'argent est $\rho=6,47~{\rm g\cdot cm^{-3}}$. En déduire le paramètre de la maille et la plus courte distance Ag–Br.
 - c. Les rayons ioniques valent respectivement pour Ag^+ et Br^- , 126 et 195 pm. Que peut-on en déduire quant à la nature de la liaison Ag^-Br .

$$M(Ag) = 107.9 \text{ g} \cdot \text{mol}^{-1} \text{ et } M(Br) = 79.9 \text{ g} \cdot \text{mol}^{-1}$$

Exercice sans préparation

On s'intéresse à l'équilibre homogène en phase gazeuse : $2SO_2 + O_2 = 2SO_3$.

À 700 K :
$$\Delta_r H^{\circ} = -198 \text{ kJ} \cdot \text{mol}^{-1}$$
.

	SO_2	O_2	SO_3	N_2
$C_p^{\circ} \left(\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1} \right)$	39,9	29,4	50,7	29,1

La réaction se déroule dans un réacteur adiabatique, à pression constante P_0 . À l'état initial, à la température initiale de 700 K, on met en présence 10 mol de SO_2 , 10 mol de O_2 et 40 mol de N_2 . On obtient 9 mol de SO_3 à l'équilibre.

- 1. Calculer la constante de l'équilibre à la température finale.
- 2. Déterminer la température finale du système à l'équilibre.